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Group Decoding for Interference Management

Xiaodong Wang

Department of Electrical Engineering

Columbia University

joint work with

Ali Tajer Narayan Prasad Chen Gong
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Multi-cell Networks

future networks are interference-limited

• shrinking cell sizes

• ambitious spectral efficiencies

• universal frequency reuse

recent developments

• MIMO networks

• game theory

• interference alignment

Columbia University 2
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Multi-cell Downlink Systems

interference management: decode or suppress?

conventional way:

suppress interference

• precoding

• scheduling

new look: decode interference

• interference has structure

• decoding it might be helpful

Columbia University 3
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Decoding Interference

user RXm must decode TXm

1) which interferers should

RXm decode? (2K−1 options)

(group decoding)

2) what fraction of an interferer

should be decoded?

(rate splitting)

a

TX1

TX2

...

TXK

RX1

RX2

...

RXK
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Decoding Interference

user RXm must decode TXm

1) which interferers should

RXm decode? (2K−1 options)

(group decoding)

2) what fraction of an interferer

should be decoded?

(rate splitting)

a

layers

layers

layers

TX1

TX2

...

TXK

RX1

RX2

...

RXK
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Rate Splitting

multiple codebooks per BS

all codebooks are independent

rate splitting:

• one private message

• multiple public messages

• private → to intended user

• public → to all users

a

private

public

private

public

private

public

TX1

TX2

...

TXK

RX1

RX2

...

RXK
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How Many Codebooks per BS?

private message:

• 1 codebook

public messages:

• 1 codebook for each arbitrary

set of unintended receivers

• 2K−1 − 1 codebooks

2K−1 codebooks per BS

K = 2 → Han-Kobayashi

a

private

public

private

public

private

public

TX1

TX2

...

TXK

RX1

RX2

...

RXK
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Group Decoding

receiver Um:

1. must decode all the 2K−1 segments of the message of BSm

2. receives interference from (K − 1) interferers {BSn}n6=m

3. each interferer has a message consisting of 2K−1 segments

4. M = (K − 1)2K−1 is the total message segments interfering with Um

5. decodes a subset of the interfering segments along with its intended

message

6. there exist 2M − 1 choices for group decoding

Columbia University 7
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Group Decoding

advantages:

• freedom in managing the in-

terference

• higher achievable rates

2K−1 codebooks per TX

K = 2 → Han-Kobayashi

challenges:

• complexity

• TX coordination

a

layers

layers

layers

TX1

TX2

...

TXK

RX1

RX2

...

RXK
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Group Decoding

simplification: one codebook per user

generalization: follows same ideas

assumptions:

• users share their codebooks

at each receiver:

• jointly decode a group of in-

terferers along with the desired

user

• treat the rest as Gaussian noise

a

one layer

one layer

one layer

TX1

TX2

...

TXK

RX1

RX2

...

RXK

Motahar and Khandani (ISIT’07)
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3-user Interference Channel

if deemed beneficial:

decode the desired user jointly with any other set of interferers

objective: decode the blue message

MMSE

ML

Columbia University 10
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Rate Region

{TX1, . . . ,TXK} → RXm

• for partition K = {G,K\G}, m ∈ G

– RXm jointly decodes users in G

– RXm suppresses users in K\G as noise

• each partition {G,K\G} ⇒ one MAC

• RG
m

4= achievable rate region of this MAC

• achievable rate region for RXm:

G: decode

K\G : noise

RXm

Rm =
⋃

G⊆K: m∈G

RG
m

Columbia University 11
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Rate Region

• 3-user Interference Channel

• 3 rate regions

– R{1,2}
1 = (R1, R2) (Blue)

– R{1,3}
1 = (R1, R3) (Blue)

– R{1,2,3}
1 = (R1, R2, R3) (Gray)

• RX1 can decode any rate-vector

R ∈ R1
4= R{1,2}

1 ∪ R{1,3}
1 ∪

R{1,2,3}
1

• R1 is unbounded along R2 and R3

Columbia University 12
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Applications of Group Decoders

1. K-user interference channel

• generalized HK: an achievable rate region for any arbitrary K

• network optimization with limited coordination (almost distributed)

• fairness

2. multi-cell downlink systems

• joint precoding + group decoding

• rate allocation

3. joint channel coding + group decoding

Columbia University 13
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Two Types of Problems

fixed-rate problems ⇒ RX design

examples: outage minimization, error minimization ...

challenge: complexity

variable-rate problems ⇒ joint TX & RX design

example: rate allocation, fairness, precoding + group decoding, ...

challenge: complexity + coordination

Columbia University 14
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Complexity

Both types of problems need to identify decodable sets for each user

Each user observes 2K−1 MAC channels

A MAC channel of cardinality m involves 2m − 1 inequalities

in total
K−1∑
m=1

(
K − 1

m

)
(2m − 1) = 3K−1 − 2K−1 inequalities

Each receiver has to check (3K−1 − 2K−1) inequalities

decoding has exponential complexity in K

Columbia University 15
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Unconstrained Group Decoding

How group decoders are useful?

we develop a class of group decoders with the following features:

1. controlled complexity in implementation

2. limited coordination among the TXs

Columbia University 16
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K-user Interference Channels

Fair Rate Adaptation

Columbia University 17
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Fair Rate Adaptation

adapt the rates to channel variations with some fairness constraints

R1

R2

R1

R2

State 1

R1

R2

R1

R2

R1

R2

State 2

R1

R2

R1

R2

R1

R2

State 3

R1

R2

Columbia University 18
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Symmetric Fairness

state S, rate R ⇒ state S ′, rate R′

RAF =





max x

s.t. R′ = R + x · t remains decodable

• t = [1, . . . , 1] ⇒ identical rate increment/decrement

• t = R ⇒ identical rate scaling

RAF≥ 0 ⇒ R ∈ the capacity region of S′ ⇒ rate increment

RAF< 0 ⇒ R /∈ the capacity region of S′ ⇒ rate decrement

Columbia University 19



'

&

$

%

Symmetric Fair Rate Adaptation

1) local rate adaptation for a given partition: complexity

RAFm(G) =





max x

s.t. R′
G = RG + x · tG is decodable

2) local rate adaptation: complexity

RAFm = max
G⊆K: m∈G

RAFm(G)

3) global rate adaptation: coordination

RAF = f(RAF1, . . . , RAFK)

G: decode

K\G ⊆ K : noise

RXm

Columbia University 20
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Step 1

local rate adaptation for a given partition

Theorem 1 The solution of

RAFm(G) =





max x

s.t. R′
G = RG + x · tG is decodable

is given by

RAFm(G) = min
D 6=∅,D⊆G

f(D, G)∑
j∈D tj

.

where

f(D, G) = I(xD; ym | xK\G)−
∑

i∈D

Ri

f(D, G) is a submodular function

⇒ polynomial complexity in |G|

Columbia University 21
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Step 2 - Local Rate Adaptation

Unconstrained Group Decoder

RAFm = max
G⊆K: m∈G

RAFm(G)

1. we offer a successive decoding procedure

2. include all users to be jointly decoded: G = K

3. at each iteration identify the bottleneck users (V )

4. is m a bottleneck user?

• No: discard users in V , i.e., G ← G\V ; repeat step 3

• Yes: users in G should be jointly decoded

Columbia University 22



'

&

$

%

Local Rate Adaptation for RX1

Objective: Determine RAF1 and the partition {G∗1,K\G∗1}

RX1

RX 2

RX 3

RX 4

RX 5

RX 6

V = arg min
D 6=∅,D⊆G

f(D,G)∑
j∈D tj

G = {1, 2, 3, 4, 5, 6} and K\G = {}

Columbia University 23
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Local Rate Adaptation for RX1

Objective: Determine RAF1 and the partition {G∗1,K\G∗1}

RX1

RX 2

RX 3

RX 4

RX 5

RX 6

V = {4, 6}

G = {1, 2, 3, 4, 5, 6} and K\G = {}
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Local Rate Adaptation for RX1

Objective: Determine RAF1 and the partition {G∗1,K\G∗1}

RX1

RX 2

RX 3

RX 4

RX 5

RX 6

V = arg min
D 6=∅,D⊆G

f(D,G)∑
j∈D tj
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Local Rate Adaptation for RX1

Objective: Determine RAF1 and the partition {G∗1,K\G∗1}

RX1

RX 2

RX 3

RX 4

RX 5

RX 6

V = {3}

G = {1, 2, 3, 5} and K\G = {4, 6}

Columbia University 23
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Local Rate Adaptation for RX1

Objective: Determine RAF1 and the partition {G∗1,K\G∗1}

RX1

RX 2

RX 3

RX 4

RX 5

RX 6

V = arg min
D 6=∅,D⊆G

f(D,G)∑
j∈D tj

G = {1, 2, 5} and K\G = {3, 4, 6}
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Local Rate Adaptation for RX1

Objective: Determine RAF1 and the partition {G∗1,K\G∗1}

RX1

RX 2

RX 3

RX 4

RX 5

RX 6

V = {1, 5}
1 ∈ V ⇒ G∗1 = G

G = {1, 2, 5} and K\G = {3, 4, 6}

Columbia University 23
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Local Rate Adaptation for RX1

Objective: Determine RAF1 and the partition {G∗1,K\G∗1}

RX1

RX 2

RX 3

RX 4

RX 5

RX 6

G∗1 = {1, 2, 5}
RAF1 = fk(V,G∗1)−∑

i∈V Ri∑
j∈V tj

G = {1, 2, 5} and K\G = {3, 4, 6}

Columbia University 23
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Local Rate Adaptation for RXm

Optimality

Theorem 2 The partitioning {G∗m,K\G∗m} yielded by the

Unconstrained Group Decoder maximizes RAFm(G) over all valid G,

i.e.,

RAFm = max
G⊆K: m∈G

RAFm(G) = RAFm(G∗m)

where RAFm is the maximum rate adaptation factor sustained by user

m.

• at most K iterations

• each iteration polynomial in at most K

polynomial complexity in K

Columbia University 24
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Step 3 - Global Rate Adaptation

obtain RAF as a function of { RAF1,. . . ,RAFK}

• Each user computes a rate increment factor RAFm independently

• The optimal rate increment factor is RAF = minm{RAFm}

1: Input R

2: for m = 1, . . . , K do

3: Determine RAFm and G∗m
4: end for

5: Update R′ ← R + min1≤m≤K{RAFm} · t
6: Output R′ and {G∗m}K

m=1

distributed

Columbia University 25
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Step 3 - Global Rate Adaptation

Optimality

Theorem 3 The rate vector yielded satisfies

R º R̃,

where R̃ is any decodable rate-vector such that R̃ = R + x · t for

some x ≥ 0.

The overall algorithm is distributed with polynomial
complexity

Columbia University 26
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MIMO Networks

Network Optimization

Columbia University 27



'

&

$

%

Downlink in MIMO Networks

• multi-cell network

• broadcast transmission (MISO)

• collaborative (among BSs) linear precoding to harness

– inter-cell interference

– intra-cell interference

Columbia University 28
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Downlink in MIMO Networks

interference management: decode or suppress?

• three-layer transmission

1. multi-antenna pre-coding

2. rate allocation

3. UGD

jointly solve these two problems

• design the precoders

• design the optimal group de-

coders

Columbia University 28
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Network Optimization

Max-Min Rate Optimization

Maximize worst-case weighted rate subject to power constraint

R(P0) =





max{wi} mini
Ri
ρi

s.t.
∑M

i=1 αi‖wi‖2 ≤ P0

R is decodable

Power Optimization

Minimize weighted sum-power subject to QoS guarantees

P(ρ) =





min{wi}
∑M

i=1 αi‖wi‖2
s.t. Rate ρ is decodable

Columbia University 29
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Rate Optimization for UGD

Solving R(P0) can be facilitated by solving P(ρ)

Theorem 4 The problems R(P0) and P(ρ) are related as

if P(ρ) feasible, then R
(
P(ρ)

)
= 1

and P
(
R(P0) · ρ

)
≤ P0,

with the equality only if the weighted sum-power constraint of R(P0)
holds with equality.

We formulate and treat the power optimization problem P(ρ)

Columbia University 30
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Power Optimization for UGD

Theorem 5 For identical rate weights ρi = ρ the power optimization

problem with UGD is given by

P(ρ) =





min{wi}
∑M

i=1 αi‖wi‖2
s.t. Rate ρ is decodable

the constraint ρ being decodable is a non-linear non-convex one

• P(ρ) is a non-linear non-convex problem

• not guaranteed to have a solution even when solved in a

centralized setup

Remedy: A two-stage distributed suboptimal approach

Columbia University 31
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Two-stage distributed Rate Optimization

1. Beamforming design

• use single-user (MMSE) decoders (treat interference as noise)

• offer distributed algorithms for solving P(ρ) and R(P )

2. Excess Rate Allocation

• BSs exchange their codebooks

• For the given set of beamformers, BSs deploy UGD

• UGD allows BSs support rates higher than those yielded by

MMSE decoders

Columbia University 32
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Distributed Beamforing Design

For MMSE receivers the problem simplifies to

P(ρ) =





min{w̃i}
∑M

i=1 ‖w̃i‖2

s.t.
|h̃i,iw̃i|2∑

j 6=i |h̃i,jw̃s
j |2+σs

i

≥ 1

Lemma 1 Problem P(ρ) is feasible only if the channel realizations are

such that

rank(Q) ≥ M

2
.

where the matrix Q is determined by the channel coefficients and M is

the number of transmit antennas.

Columbia University 33
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Distributed Beamforing Design

Lemma 2 The problem P(ρ) and its Lagrangian dual exhibit a zero

duality gap.

The design involves the following optimization methods

1. Partial Lagrangian: Obtained by dualizing interference margin

constraints

2. Subgradient: Distributed algorithm for minimizing

non-differentiable convex functions

Theorem 6 The problems R(P0) and P(ρ) can be solved optimally

in a distributed way.

Columbia University 34
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Excess Rate Allocation

Channels + beamformers: MU Interference Channel

• Rmin is the rate achieved by using

MMSE receivers

• BSs share their codebooks

(very limited information exchange)

• RXs use UGD

• RXs can boost their rates beyond Rmin

TX1

TX2

...
TXN

RX1

RX2

...
RXN

Columbia University 35
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Excess Rate Allocation

• UGD: A compromise between rate increments of different RXs

• There should exist coordination among RXs for incrementing rates

• Coordinations should be carried out in a distributed way

• Computationally efficient algorithms

• Rate increments should satisfy max-min fairness (the original

problem was max-min rate optimization)

Columbia University 36
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Max-Min Rate Allocation

MMSE receiver, rate Rmin ⇒ UGD receiver, rate R

RAFmm =





max mink
rk

ρk

s.t. R = Rmin + r remains decocable

RAFmm: the max-min rate adaptation factor

UGD is superior to MMSE ⇒ RAFmm ≥ 0

Columbia University 37
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Solving Max-Min Rate Allocation

connections with the rate adaptation problem in interference channels

similarities:

• similar steps:

1. solving RAFmm for any given user and partition

2. locally solving RAFmm for each user (optimizing over partitions)

3. finding the globally optimal partitions

• similar successive decoding procedure

• same complexity (polynomial)

Columbia University 38
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Solving Max-Min Rate Allocation

connections with the rate adaptation problem in interference channels

differences:

• amount of information exchange (higher)

• the relationship between the global and local adaptation factors

• each receiver suggests a set of rate changes for all BSs

• therefore, each BS receives multiple suggestions

• each BS obtains its adaptation factor by picking the smallest

suggested change by all users

Columbia University 39
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Max-Min Fair Rate Adaptation
1: Initialize R(0) = R and q = 0

2: repeat

3: for k = 1, . . . , K do

4: Find {ri
k}K

i=1

5: end for

6: Update q ← q + 1 and R
(q)
k = Rk + min1≤i≤K{rk

i } and R ← R(q)

7: until R(q) converges

Theorem 7 The algorithm

1. is monotonic in the sense that R(q+1) º R(q) and is convergent.

2. at each iteration the vector R(q) is max-min optimal, i.e., for any

other arbitrary decodable rate vector R̃ º Rmin we have

min
k∈K

R
(q)
k −R

(0)
k

ρk
≥ min

k∈K
R̃k −R

(0)
k

ρk
.

3. provides pareto-optimal rate adaptaion

Columbia University 40
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Max-Min Rate for Different Channel Realizations
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UGD Receiver
MMSE Receiver
Channel Matching + MMSE Receiver

• three cells, each with 3 users

• BSs: 4 transmit antennas, users: 1 receive antenna

• rates normalized with those achievable with UGD

Columbia University 41
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Comment on Decoding Complexity

• each receiver partitions the interferers into two sets:

– decodable set: a group to be decoded jointly via ML decoding

– noise set: a group to be treated as Gaussian noise

• the size of the decodable set is between 1 and K

• for large decodable sets ML is computationally prohibitive

• to harness such ML decoding complexity

– partition the decodable set to smaller sets of cardinality ≤ µ

– devise a successive decoding procedure and decoding these

partitions successively

– all the optimality claims still hold true

Columbia University 42
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Joint Channel Coding and Group Decoding

Columbia University 43
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Multi-cell Downlink Systems

interference management: decode or suppress?

• adding another layer:

1. multi-antenna pre-coding

2. rate allocation

3. UGD

4. channel coding

Columbia University 44



'

&

$

%

Practical Challenges

• the rates suggested by group decoders might not be practical rates

1. impractical signal constellation

2. impractical code rates

• real codes yield degraded rates compared to Gaussian codeboks

• allow each receiver to decoded the interferers only partially

• decoding complexity: the size of decodable set must be ≤ µ

Columbia University 45
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Strategies

1. assign multiple codebooks to each transmitter

• allows decoding it by the non-intended receivers only partially

2. quantize the rates yielded by the algorithm

• quantization according to a given set of implementable rates

• quantization level are chosen to minimize the rate distortion

3. use rateless codes to implement discrete rates

• easy to adjust to channel (and rate) fluctuations

4. there is a gap between the practical rates and the Shannon rate

• optimize the code profile to minimize the gap

Columbia University 46
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Multiple Codebooks for Each Transmitter

• The message of TX j transmitter split into Lj smaller layers

• xj,k: the kth layer of TX j drawn from an independent codebook

• codebook superposition at TX j

xj =
Lj∑

k=1

xj,k

• Equal power allocation for all layers, i.e., E(|xj,k|2) = P
Lj

.

• The transmitters collectively have
∑K

j=1 Lj codebooks

Columbia University 47
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Constrained Partial Group Decoder (CPGD)

• The ith receiver partitions the set of all codebooks to Qi and Q̃i

– codebooks in Qi to be decoded

– codebooks in Q̃i
to be treated as noise

• Qi is also partitioned to Qi 4= {Qi
1, . . . ,Qi

pi
}:

– |Qi
m| ≤ µ for m ∈ {1, . . . , pi}

• constrained partial group decoder:

– pi-stage successive decoding;

– during the mth stage, decode Qi
m while treating the following

codebooks as noise
(∪`>mQi

`

)⋃
Q̃i

Columbia University 48
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Sum-rate Maximization

no practical constraints on rate selection and channel coding yet

• sum-rate by CPGD

• ideal Gaussian codebooks

• ideal infinite-length codes

• 6 pairs of transceivers

• 5 codebooks per TX
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MMSE decoding

Columbia University 49



'

&

$

%

Practical Rate Selection

a two-step rate selection procedure

1. coarse tuning: suggests rates based on the long-term statistical

knowledge of the channels

2. fine tuning: further improve the rates based on the instantaneous

channel states

Columbia University 50
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Practical Rate Selection (2)

• coarse tuning: Quantize the rates yielded by the CPGD according

to the quantization vector d = [d0, d1, . . . , dT ] where d0 = 0

if Ri ∈ (dk, dk+1] ⇒ R̃i = dk

• d is designed

– a pre-designed channel code for N channel uses

– a pre-designed modulation scheme

– and such that the average rate distortions due to rate

quantization is minimized

• fine tuning: scale up the rates from R̃i to η∗ · R̃i

– η∗ = max η such that {η · R̃i} still decodable

– achieve η∗ · R̃i via N
η∗ channel uses

Columbia University 51
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Sum-rate vs. SNR

• {Ri} yielded by CPGD

• {R̃i} by coarse tuning

• {η∗R̃i} by fine tuning

• 6 pairs of transceivers

• 5 codebooks per TX

• Layered outperforms unlayered

• Fine tuning offers 20% rate en-

hancement 0 1 2 3 4 5 6 7 8 9
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Code Profile Optimization

• Reducing the gap to Gaussian

rates

• Performance gain from

– Layered scheme

– Optimized d

– Profile optimization

0 1 2 3 4 5 6 7 8 9

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

P/σ2 (dB)

S
um

 R
at

e

 

 

un−layered, optimum
layered, optimum
un−layered, uniform
layered, uniform
un−layered, Luby profile
layered, Luby profile

Columbia University 53



'

&

$

%

Conclusions

• we have proposed group decoders with constrained and

unconstrained sizes

• we characterize new achievable rate regions for K-user

interference channels

• group decoders can be used in conjunction with any other

interference management techniques, e.g., linear precoding

• certain advantages in some rate allocation problems

– fair rate adaptation in interference channels

– max-min rate optimization in MIMO networks

• implementing group decoders is practically feasible

– polynomial complexity with the network size

– distributed with very limited information exchange
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